PROTEIN STRUCTURAL CHARACTERIZATION
High Resolution Analysis of Protein & Antibody Structure

Technology
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has now become an indispensable technique for the structural and functional characterization of proteins.




Technological Advantages

FEATURES & BENEFITS:








Additional Tools & Techniques for Structural Proteomics
Top/Middle-Down Analysis with Hydrogen-Deuterium Exchange & FT-ICR-MS (Intact or partially proteolyzed protein)
Features & Benefits
- Higher-order structural characterization – reveals hydrogen bonding patterns and solvent exposure
- Close-to-single-residue resolution
- High sequence-coverage
- Reduced back-exchange
- Isoform-specific analysis
Applications
- Analyze proteins & antibodies <150 kDa
- Compare biosimilars to originator drugs
- Pinpoint conformational changes, bonding patterns, or binding sites
Bottom-Up Analysis with Hydrogen-Deuterium Exchange & FT-ICR-MS
Features & Benefits
- Higher-order structural characterization
- Reveals hydrogen bonding patterns
- No size limitation on the proteins that can be analyzed
Applications
- Analyze proteins & antibodies <150 kDa
- Compare biosimilars to originator drugs
- Pinpoint conformational changes, bonding patterns, or binding sites
Post-Translational Modification Analysis with FT-ICR-MS
Features & Benefits
- Characterize post-translational modifications (PTMs)
- Generate isoform-specific information
Applications
- Global glycosylation profiling
- Determine disulphide bonding patterns
Intact Mass Measurement
Features & Benefits
- Ultrahigh resolution
Applications
- Determine mass of intact protein with extremely high accuracy
Protein/peptide sequencing
Features & Benefits
- Approaching single-residue resolution
Applications
- Determine or confirm primary structure
Crosslinking with Bottom-Up MS Analysis
Features & Benefits
- Characterize 3D protein structures (tertiary & quaternary) for difficult-to-crystalize proteins
- >40 custom crosslinking reagents for generating diverse constraint data
- In-house custom software for rapid and automated data analysis
Applications
- Analyze protein folding or misfolding
- Determine protein complex assemblys
- Study protein-protein interactions
- Generate constraint data for 3D structure modeling
Surface Modification with Bottom-Up MS Analysis
Features & Benefits
- Characterize 3D protein structures (tertiary & quaternary) for difficult-to-crystalize proteins
- >10 custom reagents for surface modification
Applications
- Analyze protein folding or misfolding
- Determine protein complex assemblys
- Generate additional constraint data for 3D structure modelings
Limited Proteolysis
Features & Benefits
- Characterize 3D protein structures (tertiary & quaternary)
Applications
- Analyze protein folding or misfolding
- Determine protein complex assemblys
- Generate additional constraint data for 3D structure modelings
Combination Approaches
Features & Benefits
- Multiple methods for lots of constraint data (crosslinking, surface medication, limited proteolysis, etc.)
- Recent high profile publications for protein structure determination
Applications
- Determine tertiary and quaternary structure for difficult-to-crystalize proteins
- Map binding sites and orientations

APPLICATIONS

PUBLICATIONS
2014
Pan, J.; Zhang, S.; Parker, C. E.; Borchers, C. H.
2016
Pan, J.; Zhang, S.; Chou, A.; Borchers, C. H.
2016
Pan, J.; Zhang, S.; Borchers, C. H.
2015
Plaschka, C.; Larivière, L.; Wenzeck, L.; Seizl, M.; Hemann, M.; Tegunov, D.; Petrotchenko, E. V.; Borchers, C. H.; Baumeister, W.; Herzog, F.; Villa, E.; Cramer, P.
2015
Solomonson, M.; Setiaputra, D.; Makepeace, K. A.; Lameignere, E.; Petrotchenko, E. V.; Conrady, D. G.; Bergeron, J. R.; Vuckovic, M.; DiMaio, F.; Borchers, C. H.; Yip, C. K.; Strynadka, N. C.
2016
Groitl, B.; Horowitz, S.; Makepeace, K. A.; Petrotchenko, E. V.; Borchers, C. H.; Reichmann, D.; Bardwell, J. C.; Jakob, U..
2014
Quan, S.; Wang, L.; Petrotchenko, E. V.; Makepeace, K. A.; Horowitz, S.; Yang, J.; Zhang, Y.; Borchers, C. H.; Bardwell, J. C.
2014
Brodie, N. I.; Makepeace, K. A.; Petrotchenko, E. V.; Borchers, C.
2016
Brodie, N. I.; Petrotchenko, E. V.; Borchers, C. H.